Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Engineering (Beijing) ; 2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-2237552

ABSTRACT

Understanding the immunological characteristics of monocytes-including the characteristics associated with fibrosis-in severe coronavirus disease 2019 (COVID-19) is crucial for understanding the pathogenic mechanism of the disease and preventing disease severity. In this study, we performed single-cell transcriptomic sequencing of peripheral blood samples collected from six healthy controls and 14 COVID-19 samples including severe, moderate, and convalescent samples from three severely/critically ill and four moderately ill patients. We found that the monocytes were strongly remodeled in the severely/critically ill patients with COVID-19, with an increased proportion of monocytes and seriously reduced diversity. In addition, we discovered two novel severe-disease-specific monocyte subsets: Mono 0 and Mono 5. These subsets expressed amphiregulin (AREG), epiregulin (EREG), and cytokine interleukin-18 (IL-18) gene, exhibited an enriched erythroblastic leukemia viral oncogene homolog (ErbB) signaling pathway, and appeared to exhibit pro-fibrogenic and pro-inflammation characteristics. We also found metabolic changes in Mono 0 and Mono 5, including increased glycolysis/gluconeogenesis and an increased hypoxia inducible factor-1 (HIF-1) signaling pathway. Notably, one pre-severe sample displayed a monocyte atlas similar to that of the severe/critical samples. In conclusion, our study discovered two novel severe-disease-specific monocyte subsets as potential predictors and therapeutic targets for severe COVID-19. Overall, this study provides potential predictors for severe disease and therapeutic targets for COVID-19 and thus provides a resource for further studies on COVID-19.

2.
Front Immunol ; 12: 681516, 2021.
Article in English | MEDLINE | ID: covidwho-1399136

ABSTRACT

Coronavirus disease 2019 (COVID-19) broke out and then became a global epidemic at the end of 2019. With the increasing number of deaths, early identification of disease severity and interpretation of pathogenesis are very important. Aiming to identify biomarkers for disease severity and progression of COVID-19, 75 COVID-19 patients, 34 healthy controls and 23 patients with pandemic influenza A(H1N1) were recruited in this study. Using liquid chip technology, 48 cytokines and chemokines were examined, among which 33 were significantly elevated in COVID-19 patients compared with healthy controls. HGF and IL-1ß were strongly associated with APACHE II score in the first week after disease onset. IP-10, HGF and IL-10 were correlated positively with virus titers. Cytokines were significantly correlated with creatinine, troponin I, international normalized ratio and procalcitonin within two weeks after disease onset. Univariate analyses were carried out, and 6 cytokines including G-CSF, HGF, IL-10, IL-18, M-CSF and SCGF-ß were found to be associated with the severity of COVID-19. 11 kinds of cytokines could predict the severity of COVID-19, among which IP-10 and M-CSF were excellent predictors for disease severity. In conclusion, the levels of cytokines in COVID-19 were significantly correlated with the severity of the disease in the early stage, and serum cytokines could be used as warning indicators of the severity and progression of COVID-19. Early stratification of disease and intervention to reduce hypercytokinaemia may improve the prognosis of COVID-19 patients.


Subject(s)
COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Transcriptome/immunology , Adult , Aged , Biomarkers/blood , Chemokines/blood , Chemokines/genetics , Chemokines/immunology , Cytokines/blood , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/blood , Influenza, Human/immunology , Male , Middle Aged
3.
ISPRS international journal of geo-information ; 9(9), 2020.
Article in English | ProQuest Central | ID: covidwho-1122222

ABSTRACT

Clarifying the regional transmission mechanism of COVID-19 has practical significance for effective protection. Taking 103 county-level regions of Hubei Province as an example, and taking the fastest-spreading stage of COVID-19, which lasted from 29 January 2020, to 29 February 2020, as the research period, we systematically analyzed the population migration, spatio-temporal variation pattern of COVID-19, with emphasis on the spatio-temporal differences and scale effects of related factors by using the daily sliding, time-ordered data analysis method, combined with extended geographically weighted regression (GWR). The results state that: Population migration plays a two-way role in COVID-19 variation. The emigrants’ and immigrants’ population of Wuhan city accounted for 3.70% and 73.05% of the total migrants’ population respectively;the restriction measures were not only effective in controlling the emigrants, but also effective in preventing immigrants. COVID-19 has significant spatial autocorrelation, and spatio-temporal differentiation has an effect on COVID-19. Different factors have different degrees of effect on COVID-19, and similar factors show different scale effects. Generally, the pattern of spatial differentiation is a transitional pattern of parallel bands from east to west, and also an epitaxial radiation pattern centered in the Wuhan 1 + 8 urban circle. This paper is helpful to understand the spatio-temporal evolution of COVID-19 in Hubei Province, so as to provide a reference for similar epidemic prevention.

4.
Front Immunol ; 11: 586073, 2020.
Article in English | MEDLINE | ID: covidwho-1021888

ABSTRACT

Since the December 2019 outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, the infection has spread locally and globally resulting in a pandemic. As the numbers of confirmed diagnoses and deaths continue to rise, COVID-19 has become the focus of international public health. COVID-19 is highly contagious, and there is no effective treatment yet. New treatment strategies are urgently needed to improve the treatment success rate of severe and critically ill patients. Increasing evidence has shown that a cytokine storm plays an important role in the progression of COVID-19. The artificial-liver blood-purification system (ALS) is expected to improve the outcome of the cytokine storm. In the present study, the levels of cytokines were detected in 12 COVID-19 patients pre- and post-ALS with promising results. The present study shows promising evidence that ALS can block the cytokine storm, rapidly remove the inflammatory mediators, and hopefully, suppress the progression of the disease, thereby providing a new strategy for the clinical treatment of COVID-19.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines/blood , Hemoperfusion , Liver/metabolism , Plasma Exchange , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/complications , Cytokine Release Syndrome/etiology , Female , Humans , Male , Middle Aged
5.
Ann Acad Med Singap ; 49(9): 652-660, 2020 09.
Article in English | MEDLINE | ID: covidwho-972949

ABSTRACT

INTRODUCTION: Coronavirus Disease 2019 (COVID-19) has significantly affected the way healthcare is delivered in Singapore. Healthcare services such as renal transplantation had to rapidly adjust and meet the needs to (1) protect patients and staff, (2) ramp up, conserve or redeploy resources while (3) ensuring that critical services remained operational. This paper aims to describe the experience of the renal transplant programme at the Singapore General Hospital (SGH) in responding to the risks and constraints posed by the pandemic. METHODS AND MATERIALS: This is a review and summary of the SGH renal transplant programme's policy and protocols that were either modified or developed in response to the COVID-19 Pandemic. RESULTS: A multi-pronged approach was adopted to respond to the challenges of COVID-19. These included ensuring business continuity by splitting the transplant team into different locations, adopting video and tele-consults to minimise potential patient exposure to COVID-19, streamlining work processes using electronic forms, ensuring safe paths for patients who needed to come to hospital, ring-fencing and testing new inpatients at risk for COVID-19, enhancing precautionary measures for transplant surgery, ensuring a stable supply chain of immunosuppression, and sustaining patient and staff education programmes via video conferencing. CONCLUSIONS: Though the COVID-19 pandemic has reduced access to kidney transplantation, opportunities arose to adopt telemedicine into mainstream transplant practice as well as use electronic platforms to streamline work processes. Screening protocols were established to ensure that transplantation could be performed safely, while webinars reached out to empower patients to take precautions against COVID-19.


Subject(s)
COVID-19/prevention & control , Delivery of Health Care/organization & administration , Immunosuppressive Agents/supply & distribution , Kidney Transplantation , Telemedicine , Videoconferencing , COVID-19/diagnosis , COVID-19/epidemiology , Delivery of Health Care/methods , Graft Rejection/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Mass Screening , Organizational Policy , Patient Education as Topic/methods , Patient Education as Topic/organization & administration , Personnel Staffing and Scheduling , Physical Distancing , Singapore/epidemiology , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL